Elevator themselves are simple devices

03/feb/2016 07:03:04 antaibra oparts Contatta l'autore

Questo comunicato è stato pubblicato più di 1 anno fa. Le informazioni su questa pagina potrebbero non essere attendibili.

Elevator themselves are simple devices, and the basic lifting systems have not changed much in over 50 years. The control systems, however, have changed sub-stantially to improve safety and speed of operation. Elevators are designed for a specific building, taking into account such factors as the height of the building, the number of people traveling to each floor, and the expected periods of high usage.

Elevators have not changed substantially in many years and are unlikely to do so in the near future. Electronic controls will continue to improve in ways that are evolutionary and not very dramatic. Control systems are being developed that will learn from past traffic patterns and use this information to predict future needs in order to reduce waiting times. Laser controls are coming into use, both to gauge car speed and distance, as well as to scan building floors for potential passengers.

Electric-powered elevators offered two significant advantages. First, electric power was clearly becoming universally available, and any building likely to be equipped with an elevator would also have electric power. Second, hydraulic elevators were severely limited in the height to which they could rise, while electric elevators, using a simple cable and pulley system, had virtually no height limit. For many years, electric elevators used either direct current (DC) motors or alternating current (AC) motors. Today, almost all elevators use one of two types of AC motors: the most common are geared motors for elevators moving at speeds up to 500 feet per minute (153 m per minute), while direct-drive motors are used for elevators moving at higher speeds. Some modern high-speed elevators move at up to 2,000 feet per minute (610 m per minute).

The elevator car itself is constructed with a steel framework for durability and strength. A set of steel beams above the car, called the crosshead, span the elevator shaft from side to side and hold the pulley for the hoist cable. A steel structure, called the sling, extends down the sides of the car from the crosshead and cradles the floor, or platform. The sides of a passenger elevator car are usually made from steel sheet and are trimmed on the inside with decorative paneling. The floor of the car may be tiled or carpeted. Handrails and other interior trim may be made from stainless steel for appearance and wearability. A suspended ceiling is usually hung below the actual top of the car and may contain fluorescent lighting above plastic diffuser panels. The elevator controls, alarm buttons, and emergency telephone are contained behind panels in the front of the car, next to the doors.

The Escalator Company , called the car, and the counterweight each run in their own sets of guide rails. A second governor cable runs from the car up to a governor pulley, then down to a tension pulley at the bottom of the Passenger Elevator shaft, and up to the car again. This cable rotates the governor pulley at a speed directly proportional to the speed of the car. In the event of excessive car speed, the governor uses another cable to activate the emergency brake jaws which grip the guide rails and slow the car to a stop.

blog comments powered by Disqus
Comunicati.net è un servizio offerto da Factotum Srl